X JORNADAS CÁTEDRA ACERINOX MARZO 2023

VALORIZACIÓN DE ESCORIAS DE ACERO INOXIDABLE COMO ADSORBENTES PROYECTO CERES

Marta Castellote Armero – IETcc (CSIC) Eva Jiménez Relinque – IETcc (CSIC) Jorge Ruiz –IETcc (CSIC)



FONDO EUROPEO DE DESARROLLO REGIONAL (FEDER)

Una manera de hacer Europa

INVESTIGACIÓN AVANZADA EN EL ÁMBITO DE LOS RESIDUOS INDUSTRIALES DE BASE MINERAL COMO MATERIAS PRIMAS SECUNDARIAS PARA LA FORMULACIÓN DE NUEVOS PRODUCTOS ECOLÓGICOS Y LA CREACIÓN DE BUCLES DE ECONOMÍA CIRCULAR - (CERES). (№ IDENTIFICACIÓN EXPEDIENTE: MIG-20201025)

ÍNDICE

01

Introducción: Valorización de escorias de acero inoxidable 02

Introducción:
Valorización de
escorias de
acero inoxidable
como
adsorbentes

03

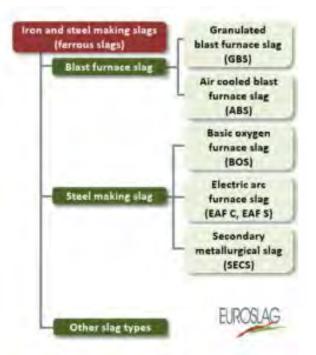
Proyecto CERES

Tratamientos a escorias

04

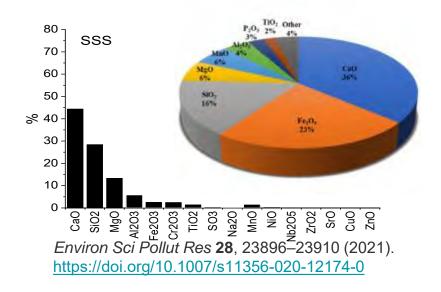
Proyecto CERES

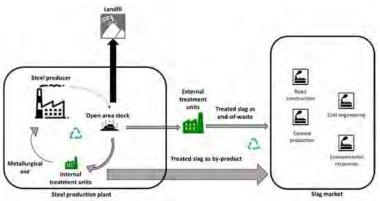
Capacidad adsorbente de las escorias **05**


Proyecto CERES

Conclusiones

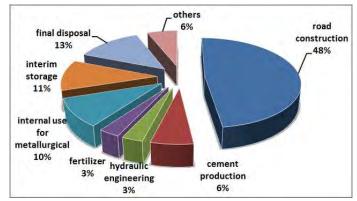
La producción mundial de acero inoxidable en 2019 superó las 52,2 Mt (International Stainless Steel Forum, ISSF).


O1 INTRODUCCIÓN VALORIZACIÓN DE ESCORIAS DE ACERO INOXIDABLE



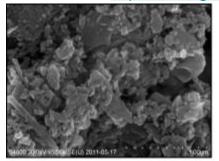
A pesar de que el acero inoxidable es un material considerado reciclable. por cada 2-4 toneladas de acero inoxidable producido, se genera aproximadamente 1 tonelada de escoria (EAFS) [1].

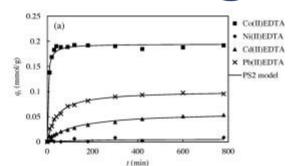
[1] EAFS: Electric arc furnace slag from stainless steel production https://doi.org/10.1016/j.resconrec.2006.05.008


O1 INTRODUCCIÓN VALORIZACIÓN DE ESCORIAS DE ACERO INOXIDABLE

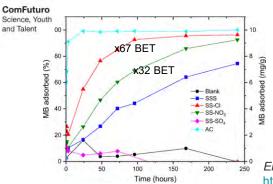
Sustainability **2022**, 14(4),

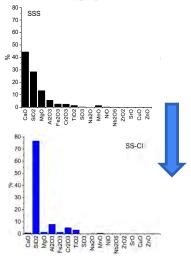
2284; https://doi.org/10.3390/su14042284




Steel slag (2010)

O2 INTRODUCCIÓN VALORIZACIÓN DE ESCORIAS DE ACERO INOXIDABLE COMO ADSORBENTES




Metales https://doi.org/10.1016/j.jiec.2014.12.025

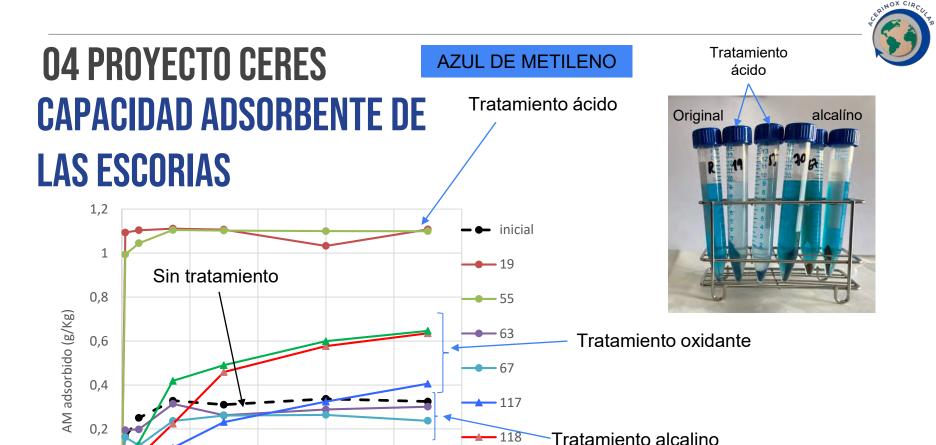
- Fosfatos
- Arsénico
- Colorantes orgánicos

Environ Sci Pollut Res **28**, 23896–23910 (2021). https://doi.org/10.1007/s11356-020-12174-0

O3 PROYECTO CERES TRATAMIENTOS A LAS ESCORIAS

- A) Inicial (sin tratamiento)
- B) Tratamiento en medio ácido
- 19
- 55
- C) Tratamiento en medio alcalíno fuerte:
- 61
- 63
- 67
- D) Tratamiento en medio oxidante
- 117
- 118
- 119





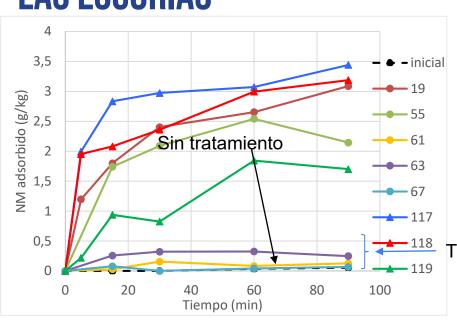
O4 PROYECTO CERES CAPACIDAD ADSORBENTE DE LAS ESCORIAS

a) azul de metileno y b) naranja de metilo

- 100 mg/10 ml de solución de AM (15 ppm) o naranja de metilo (50 ppm)
- Velocidad de rotación: 50 rpm
- A diferentes intervalos de tiempo (0, 1, 5, 15, 30, 60 y 90 min), se tomó una alícuota de la suspensión y se centrifugó a 4000 rpm durante 15 min.
- La concentración de colorante en el sobrenadante se determinó por absorbancia (AM λ = 668 nm; NM λ=461/505) mediante un espectrofotómetro Simadzu UV-Vis.

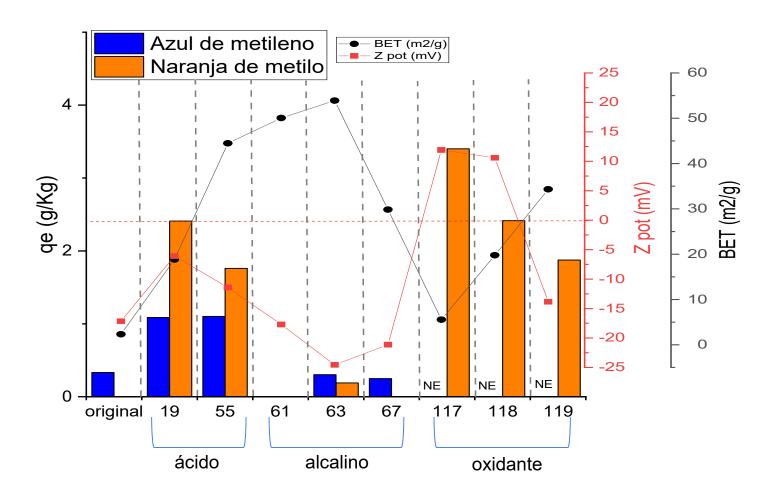
-119

100


80

20

tiempo (min)


O4 PROYECTO CERES CAPACIDAD ADSORBENTE DE LAS ESCORIAS

NARANJA DE METILO

Tratamiento oxidante Tratamiento ácido

Tratamiento alcalino

O5 CONCLUSIONES

- Las muestras sometidas a tratamiento ácido y oxidantes, incrementan su adsorción de AM y NM respecto a la escoria original, en más de 3 veces.
- Las muestras tratadas en medio básico, sin embargo, muestran adsorciones de AM incluso inferiores a la original.
- No existe una concordancia entre los valores de área BET y los valores adsorbidos de colorantes.
- La carga superficial del sólido resultante depende del tratamiento realizado, y no parece ser el parámetro que controla el proceso de adsorción → El mecanismo de adsorción no es (solamente) por atracción electrostática superficial.
- En general, los datos experimentales de adsorción de ambas tintas ajustan mejor a un modelo cinético de adsorción de pseudo-segundo orden, por lo que parece involucrado un mecanismo de quimisorción.

AGRADECIMIENTOS

MINISTERIO DE CIENCIA E INNOVACIÓN

X JORNADAS CÁTEDRA ACERINOX MARZO 2023

VALORIZACIÓN DE ESCORIAS DE ACERO INOXIDABLE COMO ADSORBENTES PROYECTO CERES

Marta Castellote Armero – IETcc (CSIC) Eva Jiménez Relinque – IETcc (CSIC)

CONTACTO:

martaca@ietcc.csic.es eva.jimenez@csic.es

X JORNADAS CÁTEDRA ACERINOX

