X JORNADAS CÁTEDRA ACERINOX MARZO 2023



Anna Alfocea Roig Iñigo Xabier García Zubiri

ÍNDICE

01

05

Presentación MAGNA

Problemática

MAGNA

06 MPC

02 Subproductos

Reciclados refractarios

04

Investigaciones- UB

Análisis de ciclo de vida

(LCA)

08

Indicadores

Nuestras cifras

- Pertenece al Grupo Roullier (60%) desde el año 2000, recientemente a 100%.
- •Ventas medias de 296.000 t. de productos con base MgO.

232.000 t. de productos refractarios

58.000 t. de magnesia cáustica

5.500 t. de «polvos» (subproductos MAGNA).

- 100 M.EUROS de volumen de negocio en 2021.
- •3 millones de euros en inversión en programas ambientales
- 250 trabajadores (200 en Magna Zubiri).
- Filiales (Canadá /USA y México)
- ·Minas: Eugi, Borobia (España) y Jucas (Brasil)

MAGNA extrae Magnesita de su mina en Eugi (Navarra, Spain), y trata el mineral en su planta de Zubiri, produciendo MgO con diferentes grados de calcinación para diferentes líneas de productos de acuerdo a la reacción:

MgCO₃ → MgO + CO₂

LÍNEA REFRACTARIOS: Magnesita calcinada a muerte (DBM)(1.800°C)

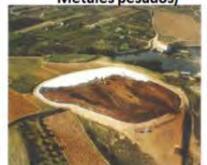
Productos Refractarios Monolíticos Básicos (MASAS):

- Solera de HAE (EAF): construcción y reparación
- Gunitado (pared de EAF, BOF, AOD y cucharas)
- Tundish
- Relleno de EBT, relleno en cucharas
- · Corrector de escorias

Edinox CIRCOLLA

LÍNEA CÁUSTICA

- Alimentación Animal
- Fertilización Vegetal

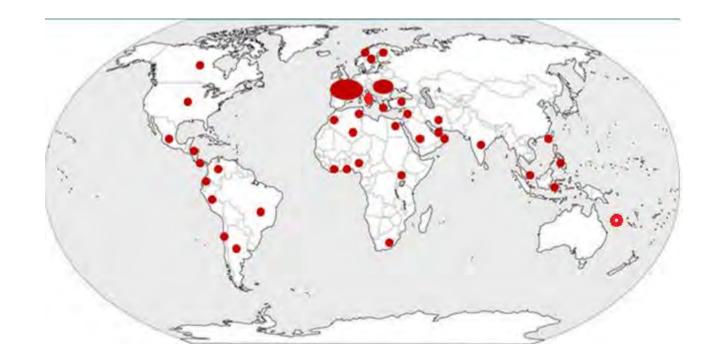


LÍNEA AMBIENTAL

Tratamientos de aguas industriales y urbanas (eliminación de fosfatos)

Recuperación de suelos contaminados (inertización de Metales pesados)

Eliminación de SO_x de gases industriales



MAGNA vende en más de 60 países y exporta el 80% de su producción

SUBPRODUCTOS MAGNA

Caracterización de los productos/subproductos Magna

Subproductos (PC-Cop) de mayor interés:

- PC8→ Polvo de los ciclones y filtros de los hornos de MAGNA.
- Sulfamag→ Polvo obtenido tras la desulfuración de los gases de SOx de los hornos de MAGNA con hidróxido cálcico.

- Análisis químico
- Distribución tamaño de partícula
- SEM, microscopía electrónica de barrido
- Metales pesados
- ATG/DSC

CARACTERIZACIÓN DE LOS RESIDUOS REFRACTARIOS A RECICLAR

Toma de muestras y caracterización (volteo tundish)

Foto de la zona de volteo de tundish en Acerinox.

Imagen de lobo de tundish tras volteo.

Posibles usos:

- Aplicación refractaria : "segunda vida"
- Aplicaciones aglomerantes y otras: OBJETIVO UPNA

LA CARACTERIZACIÓN CONSIDERA:

- Análisis químico y granulométrico.
- ICP-OES, Metales pesados.
- Densidad aparente.
- BET.
- DRX.
- TGA-DSC.
- 7. SEM.

De material Tundish/año: 3600 t. Se pueden considerar 3000 t/año de residuo

Prod. Acero 700000/800000 t anuales Una media de 65.000t mes.

Toma de muestras y caracterización (volteo tundish, tras tratamiento de selección/ "recuperación")

Ejemplo análisis FRX: Material volteo tundish (tras separación magnética)

Volteo tundish acerinox (16-6-21) Imantado / limpio										
	Total (PF >0%)	>8	8-3	3-1,4	1,4-1	1-0,5	0,5-0,3	0,3-0,1	<0,1	400.0
%		2,5	1,3	2,6	6,7	28,3	25,0	30,1	3,5	100,0 0
Applicat		OXIDOS (PERLA	OXIDOS (PERLA	OXIDOS (PERLA	OXIDOS (PERLA	OXIDOS (PERLA	OXIDOS (PERLA	OXIDOS (PERLA CALCINADA)	OXIDOS (PERLA	
SiO ₂	8,83	8,81	8,70	8,54	6,39	6,19	10,86	10,01	9,01	8,78
CaO	1,97	2,01	2,00	1,94	1,92	1,86	1,81	2,06	2,66	1,95
Fe ₂ O ₃	1,74	1,79	2,00	1,77	1,42	1,43	2,03	1,89	1,54	1,75
Al ₂ O ₃	0,65	0,75	0,66	0,66	0,81	0,72	0,64	0,58	0,68	0,66
SO ₃	0,05	0,05	0,06	0,06	0,05	0,05	0,05	0,05	0,08	0,05
Cr ₂ O ₃	0,03	0,03	0,04	0,03	0,01	0,02	0,03	0,03	0,05	0,03
P ₂ O ₅	0,11	0,11	0,11	0,11	0,11	0,11	0,11	0,10	0,11	0,11
Na ₂ O	1,00	1,21	0,99	0,92	0,79	0,79	1,03	1,06	1,62	0,97
MgO	85,24	84,72	84,39	85,25	88,18	88,50	83,07	83,82	82,84	85,28
P.F.400 P.F.105										0,00
0 Σ	0,39 100,00	0,53 100,00	1,06 100,00	0,74 100,00	0,32 100,00	0,33 100,00	0,37 100,00	0,40 100,00	1,41 100,00	0,42

Ejemplo análisis FRX: Material volteo tundish (tras separación magnética)

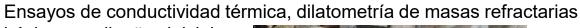
CERIMON CINCOLD
Y

	Bloques	Bloques	Bloques	Bloques		Finos	Finos	Finos	Finos
	1-3m m	1-3m m	<1mm	<1mm		1-3mm	1-3mm	<1mm	<1mm
	Imantado/Limpio	Sin imantar/Sucio	lmantado/Limpio	Sin imantar/Sucio		Imantado/Limpio	Sin imantar/Sucio	Imantado/Limpio	Sin imantar/ Suci
Application	OXIDOS (PERLA CALCINADA)	OXIDOS (PERLA CALCINADA)	OXIDOS (PERLA CALCINADA)	OXIDOS (PERLA CALCINADA)	Application	OXIDOS (PERLA CALCINADA)	OXIDOS (PERLA CALCINADA)	OXIDOS (PERLA CALCINADA)	OXIDOS (PERLA CALCINADA)
SiO ₂	3,62	7,89	4,61	4,94	SiO ₂	5,10	4,86	5,13	4,37
CaO	4,90	2,03	5,88	6,15	CaO	7,32	3,89	7,30	6,32
Fe ₂ O ₃	2,20	16,17	2,73	6,39	Fe ₂ O₃	2,20	30,78	2,79	7,04
Al ₂ O ₃	0,57	0,81	0,55	0,55	Al ₂ O ₃	1,89	1,49	0,86	0,65
SOs	0,08	0,05	0,04	0,04	SO₃	0,08	0, 13	0,06	0,07
Cr ₂ O ₃	0,20	7,68	0,08	0,98	Cr ₂ O ₃	0,34	8, 15	0,11	0,78
P ₂ O ₆	0,24	0,09	0,16	0,12	P ₂ O ₆	0.10	0, 12	0.11	0,12
Na ₂ O	0,44	0,00	0,52	0.27	Na ₂ O	0,26	0,20	0,39	0,33
MgO	87,61	65.28	85.23	80.88	MgO	82.75	50.39	82.65	80.37
P.F. 400		,	,	,	P.F.400	02,10	00,00	02,00	55,51
P.F.1050	0.17	-2,92	0.19	-0.32	P.F.1050	-0.04	-3.01	0.59	-0.04
Σ	100,00	97,08	100,00	100,00	Σ	100,00	96,99	100,00	100,00
Application	Rotap	Rotap	Rotap	Rotap	Application	Rotap	Rotap	Rotap	Rotap
(mm)	96	96	96	96	(mm)	%	%	%	%
>3	2,2	13,4	0,0	0,0	>3	1,0	0,0	0,0	0,0
3-2	35,4	63,7	0,0	0,0	3-2	36.4	46.4	0.0	0,0
2,1-4	32,1	20,4	0,0	0,0	2,1-4	29,3	28,6	0,0	0,0
1,4-1	25,6	0,2	0,6	0,5	1,4-1	26,8	21,4	0,3	1,1
1-0,8	1,1	0,6	5,4	14,0	1-0,8	1,0	3,6	5, 4	10,0
0,8-0,5	1,1	0,7	17,4	38,2	0,8-0,5	1,5	0,0	18,7	37,8
0,5-0,3	1,1	0,3	24,3	32,8	0,5-0,3	1,5	0,0	26,9	33,3
0,3-0,2	0,7	0,0	18,5	10,8	0,3-0,2	1,0	0,0	19,4	12,2
0,2-0,1	0,4	0,0	22,6	3,2	0,2-0,1	1,0	0,0	19,4	4,4
<0,1	0,3	0,7	11,2	0,5	< 0,1	0,5	0,0	9,9	1,2
	100,0	100,0	100,0	100,0		100,0	100,0	100,0	100,0

E STINOX CIRCULA

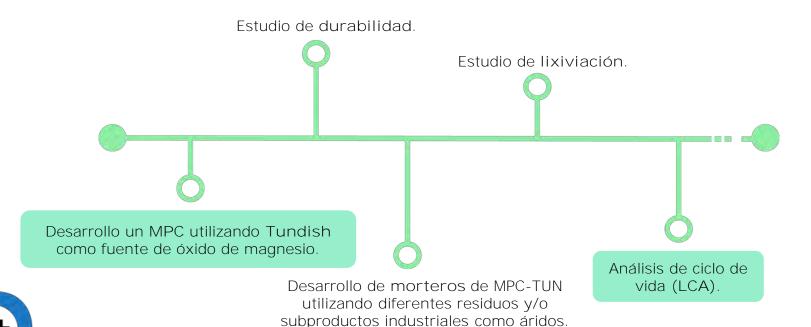
Tratamiento realizado: Separación de bloques y finos, granulometrías 1-3mm y <1mm. Simulando lo que vendría del recuperador.

		%	%
Finos 1-3mm	Sin Imantar/Sucio	2	12
1 1103 1-311111	Imantado/Limpio	2	88
Finos <1mm	Sin Imantar/Sucio	16	6
FIIIOS < IIIIIII	Imantado/Limpio	10	94
Bloques 1-3mm	Sin Imantar/Sucio	11	14
bioques i-sillili	Imantado/Limpio	11	86
Bloques <1mm	Sin Imantar/Sucio	71	2
Dioques < IIIIIII	Imantado/Limpio	/ 1	98


CAN COLAS

Primeras masas refractarias básicas diseñadas y evaluadas.

RESULTADOS MUY INTERESANTES Y ALENTADORES



INVESTIGACIONES

PROBLEMÁTICA

25-27% emisiones globales industriales.

12-15% demanda energética global industrial.

ALTERNATIVAS: MPC

Valorización de residuos.

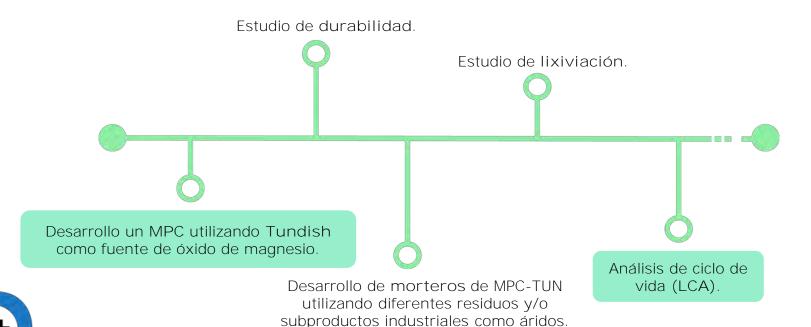
Reducción de emisiones.

Conservación de recursos naturales.

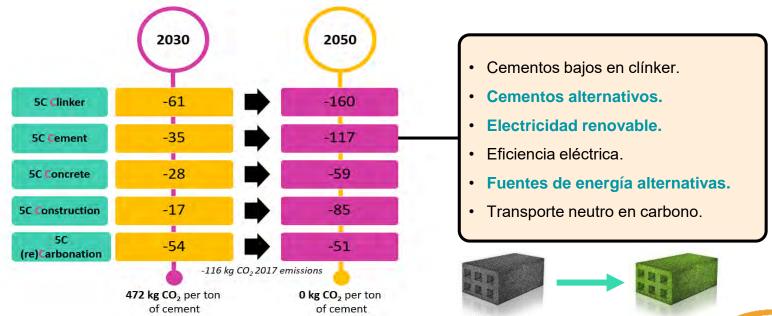
MPC

Magnesium Phosphate Cement (MPC)

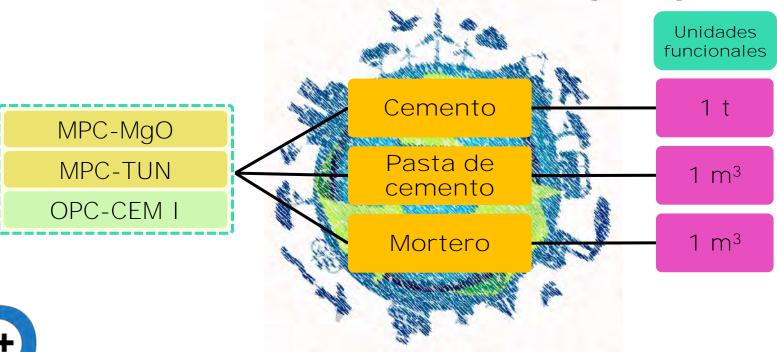
Magnesium Phosphate Cement (MPC-TUN)

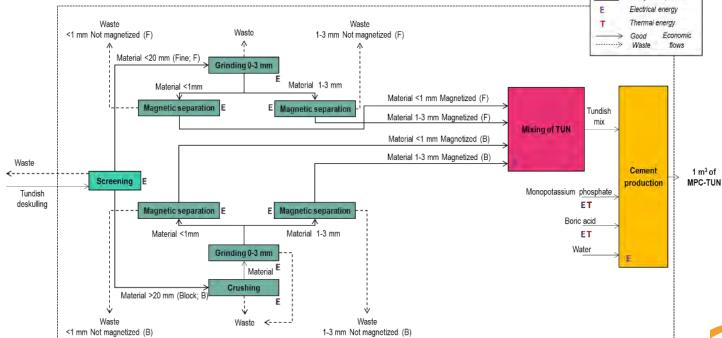


- ✓ Es viable obtener un cemento de fosfato de magnesio empleando Tundish como materia prima.
- ✓ Los cementos de fosfato de magnesio con Tundish podrían ser aceptados en los vertederos.
- ✓ La valorización de este residuo potencia la economía circular.



INVESTIGACIONES

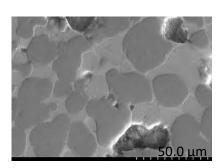




Legend:

Background process Foreground process

	Indicadores de impacto	Unidades
Consumo de recursos	Consumo de recursos energéticos	MJ
Calentamiento global (GWP)	CO ₂	kg CO ₂
Otros indicadores		


MASAS REFRACTARIAS MÁS EFICIENTES

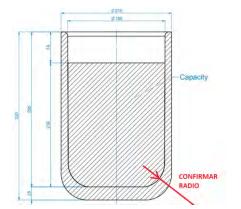
Caracterización y ensayos de Materias primas refractarias más eficientes ICV, grupo Antonio de Aza

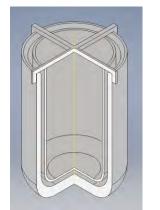
(e IDONIAL)

- Densidad, Porosimetría de Mercurio, BET, SEM y MOLR

Impresión a 650 L h

- Fabricación Aditiva Impresión 3D de material refractario para pruebas de corrosión en horno piloto ACERINOX


MASAS REFRACTARIAS MÁS EFICIENTES



Caracterización y ensayos de Materias primas refractarias más eficientes

Ensayos de revestimiento de horno piloto Acerinox (de la mano de ALFRAN)

- Fabricación Aditiva Impresión 3D de material refractario para pruebas de corrosión en horno piloto ACERINOX
- Revestimiento con molde, masas refractarias básicas auto-fraguantes

INDICADORES

600 t CO₂

129 tep

1500 t

CONCLUSIONES

- . Valorización en masas refractarias: Todos estos análisis realizados, así como evaluación de propiedades como densidad, dilatometría o refractariedad bajo carga y ahora conductividad muestran el potencial de estos residuos de volteo de tundish para empleo en masas refractarias (al menos en aplicaciones de menor exigencia).
- . Materiales Refractarios más eficientes: Estudios previos de densidad y conductividad térmica de materias primas refractarias básicas (MgO) auguran buenos resultados en horno piloto ACERINIOX como base de formulaciones para masas más eficientes energéticamente como refractario (tiempo de vida, etc.)
- . Pruebas positivas en Impresión 3D para estos materiales.

CONCLUSIONES

- · Es viable obtener un cemento de fosfato de magnesio (MPC) empleando Tundish como materia prima.
- La utilización de residuos y subproductos industriales contribuye a evaluar una posible forma de valorización promoviendo la economía circular y reduciendo su envío al vertedero.
- El impacto ambiental de los MPC con Tundish es significativamente menor en relación con los MPC con óxido de magnesio puro.
- · Para futuros estudios será necesario buscar fuentes de potasio residuales para reducir el impacto ambiental.

AGRADECIMIENTOS

El equipo de investigación Magnesitas Navarras S.A. agradece a Acerinox la invitación a esta cátedra Acerinox, a todo el consoricio CERES por estos años de trabajo y a CDTI y FEDER su apoyo económico a la investigación.

X JORNADAS CÁTEDRA ACERINOX MARZO 2023

AGRADECIMIENTOS

Este trabajo cuenta con el apoyo del Gobierno de España con el proyecto PID2021-125810OB-C21 financiado por MCIN/AEI/10.13039/501100011033, de "ERDF A way of make Europe". La Generalitat de Catalunya financia el grupo de investigación DIOPMA (certificado TECNIO), 2021 SGR 00708. AGAUR contribuyó económicamente a través de la beca de doctorado de la Sra. A. Alfocea-Roig (FI-DGR 2021). Además, este trabajo también cuenta con el apoyo y financiación de Magnesitas Navarras, S.A.

X JORNADAS CÁTEDRA ACERINOX MARZO 2023

VALORIZACIÓN DE RESIDUOS REFRACTARIOS PARA EL DISEÑO Y DESARROLLO DE NUEVOS MATERIALES SOSTENIBLES (ECO DISEÑO):

IÑIGO XABIER GARCÍA ZUBIRI ANNA ALFOCEA ROIG

CONTACTO:

+34 609 668 300

inigo.garcia@magnesitasnavarras.es annaalfocea@ub.edu

X JORNADAS CÁTEDRA ACERINOX

